Creating Surfaces from Scattered Data Using Radial Basis Functions

نویسنده

  • R. Schaback
چکیده

This paper gives an introduction to certain techniques for the construction of geometric objects from scattered data. Special emphasis is put on interpolation methods using compactly supported radial basis functions. x1. Introduction We assume a sample of multivariate scattered data to be given as a set X = solid to these data will be the range of a smooth function s : IR d ! IR D with s(x k) = y k ; 1 k N: (1) Likewise, an approximating curve, surface, or solid will make the diierences s(x j) y j small, for instance in the discrete L 2 sense, i.e. N X k=1 ks(x k) y k k 2 2 should be small. Curves, surfaces, and solids will only diier by their appropriate value of d = 1; 2, or 3. We use the term (geometric) objects to stand for curves, surfaces, or solids. Note that we assume objects to be deened via explicit representations. For implicit representations we refer the reader to Section 4. The main goal of this contribution is to describe a exible class of objects that allows construction from scattered data in a very general way. Special emphasis is put on practical aspects, while theoretical background information will be contained in a forthcoming survey, as far as it is not contained in earlier

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of Grounding Vertical Rods Buried in Complex Soils using Radial Basis Functions

In this paper, using neural networks based on radial basis functions (RBF), a comprehensive closed-form solution for effective length of vertical grounding rod is extracted in such a way that the two effects of ionization and dispersion are simultaneously considered. In creating the model, training data are computed from multi-conductor transmission line (MTL). As a results, firstly in the prop...

متن کامل

Adopting the Multiresolution Wavelet Analysis in Radial Basis Functions to Solve the Perona-Malik Equation

Wavelets and radial basis functions (RBF) have ubiquitously proved very successful to solve different forms of partial differential equations (PDE) using shifted basis functions, and as with the other meshless methods, they have been extensively used in scattered data interpolation. The current paper proposes a framework that successfully reconciles RBF and adaptive wavelet method to solve the ...

متن کامل

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

متن کامل

Scattered Data Modelling Using Radial Basis Functions

Radial basis functions are traditional and powerful tools for multivariate interpolation from scattered data. This self-contained talk surveys both theoretical and practical aspects of scattered data fitting by radial basis functions. To this end, basic features of the radial basis function interpolation scheme are first reviewed, such as well-posedness, numerical stability and approximation or...

متن کامل

Hierarchically Partitioned Implicit Surfaces For Interpolating Large Point Set Models

We present a novel hierarchical spatial partitioning method for creating interpolating implicit surfaces using compactly supported radial basis functions (RBFs) from scattered surface data. From this hierarchy of functions we can create a range of models from coarse to fine, where a coarse model approximates and a fine model interpolates. Furthermore, our method elegantly handles irregularly sa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995